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Simple model for linear and nonlinear mixing at unstable fluid interfaces in spherical geometry
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A simple model was recently described for predicting linear and nonlinear mixing at an unstable planar fluid
interface subjected to an arbitrary time-dependent variable acceleration ikt&ryRamshaw, Phys. Rev. E
58, 5834 (1999 ]. Here we present an analogous model for describing the mixing of two adjacent spherical
fluid shells of different density resulting from an arbitrary time-dependent mean interface R{@)usAs in
the planar case, the model is based on a heuristic expression for the kinetic energy of the system. This
expression is based on that for the kinetic energy of a linearly perturbed interface, but with a dynamically
renormalized effective wavelength which becomes proportional to the half-a{djhof the mixing layer in
the nonlinear regime. An equation of motion ferR?a is then derived from Lagrange’s equations. This
evolution equation properly reduces to Plesset's equation for small perturbations, and to the previous planar
model in the limit of very largeR. The conservation properties of the model are established, and a suitable
numerical scheme which preserves these properties is prod@i63-651X99)13908-4

PACS numbse(s): 47.20.Bp, 47.20.Ma, 47.27i, 47.55.Kf

I. INTRODUCTION The unperturbed velocity field within both fluids is purely
radial, and is given by=R(R/r)? [3]. We now suppose that
There is a continuing current interest in unstable fluidthe interface location is perturbed e, where
interfaces, particularly those driven by the normal accelera-
tion of adjacent fluid layers with different densities. Most of
the work in this area has been restricted to planar interfaces.
However, there is also considerable interest in unstable in-
terfaces between adjacent spherical fluid shells, which occu?,(z) is thelth Legendre polynomiall&1), and a normal-
in the implosion of inertial confinement fusion capsules andzation factor has been introduced so tlahas the same
in certain astrophysical problems. We have previously presignificance a$ in the planar casgl], namely,v2 times the
sented a simple model for describing linear and nonlinearoot-mean-square perturbation height. The perturbation is as-
mixing at unstable planar fluid interfaces subjected to arsumed to be small in the sense thii|<R. The shifted

arbitrary time-dependent acceleration histpty. Our pur-  mean radiusR is implicitly defined by the requirement that
pose here is to develop an analogous model for the spherictde perturbed interface be a Lagrangian surface across which
case. no mass or volume is transported. This requirement may be
As in the planar case, the present model is based on aypressed asfdQ 73=47R3 where dQ=sinddgde
analytical expression for the kinetic energy of a linearly per-—2 . sin 9de. Sincea is small, however, it is unnecessary to
turbed interface, together with a wavelength renormalizationsaiisfy this requirement exactly, but in the present context we
hypothesis according to which the effective wavelength ofyyst satisfy it to second order i for reasons to be ex-

the pertu_rt_)atlon bec_omes proportlonal to the ha'f'W”’m plained below. Solving foR to second order i, we obtain
of the mixing layer in the nonlinear regime. An equation of

motion fora(t) is then obtained from Lagrange’s equations, R
with an additional generalized force term to represent the R=R
effects of dissipatiori2]. This equation properly reduces to

Plesset’'s equatiofB] for a single-mode perturbation in the \here use has been made of the well-known relations
linear regime with zero dissipation, and to the corresponding

planar mode[1] in the limit of very largeR. The develop-

ment closely parallels that of the planar cé&k with which J dQ P(cos#) =0, ©)
the reader is assumed to be familiar.
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Il. EVALUATION OF THE KINETIC ENERGY 21+1°

We consider two adjacent concentric spherical shells ofquations(3) and(4), together with the easily verified rela-
incompressible fluid centered at the origin in a spherical potjon

lar coordinate systenr (6, ¢). The unperturbed interface be-

tween the fluids is located at=R(t). The inner fluid(fluid P,
1) has a densityp; and occupies the regiofR(t)<r f dQ(,g_g
<R(t), while the outer fluid(fluid 2) has a density, and

occupies the regiorR(t)<r<R,(t), where R{<R<R,. will also be needed in what follows.
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By writing Eqg. (1), we have restricted attention to pertur- is the kinetic energy of the unperturbed systehp=p,
bations with no dependence on the azimuthal agglehich  —p;, pi=p./l+p,/(1+1), and small terms of order
greatly simplifies the analysis. In a more general treatment,R, /R)? ! and (R/R,)? ™! have been neglected.
the Legendre polynomidaP (cosé) would be replaced by a Just as in the planar case, the volume per unit area of the
spherical harmoni®’{"(8,#) (Jm|<I), which becomes pro- mixing layer is proportional ta. In the spherical case, how-
portional to P,(cosé) for m=0. Fortunately, however, the ever, the area itself is no longer constant but is proportional
restriction tom=0 entails no real loss in generality, as it is to R?, which changes with time. Thus the volume of the
known from previous linear studies that the perturbationmixing layer, which is a measure of the amount or degree to
growth rate is independent of the azimuthal mode number which the two fluids have been mixed at any given time, is
[4-6]. We shall heuristically assume that the same remaingroportional tos= R?a, and a simpler and more fundamental
true in the nonlinear regime as well. Direct numerical simu-description is obtained by eliminatireganda in favor of s
lations provide some limited support for this assumpfié)  ands=R(Ra+2Ra). Indeed, Eqs(6) and(7) show that the

We require the potential flow field=V® that results perturbation to® is simply proportional tos, so that the
from the perturbed interface motion to first orderanThe  velocity field remains unperturbed whér=0, even though
potential® has been determined by Plesg&lt and is given  a and R may be changing with time. The inverse relation

by ®=®, for r<f and® =, for r>f, where between &,a) and (5,5) is given by a=s/R? and a
RZR 1(2141\12 ol =R 3(Rs—2Rs), which may be used to reexpre3sin
b= — —+7 T) (Ra+2Ra) = P,(cosf), terms ofs andS. We thereby obtain
T=To+ E[ZApRs(Rs— RS+ pR°57]. (12
RZR 1 (21+1\¥2 .
®y=— i e (Rat+2Ra) Equation(12) will be used to obtain the dynamical evolution

of the interface from Lagrange’s equatidi2§ in terms of the

R\t generalized coordinatesandR and their time derivatives

T P\(cos®), @) andR. For this purpose we must also consider the potential

energyV associated with whatever external foré¢peesumed
andg=dg/dt for any quantityq. The total kinetic energy of conservativg are employed to produce the mean interface

the system is given by =T,+T,, where motion R(t). But these forces are applied at the surfaces
i =R, and/orr =Ry, so they are independent sf It follows
_P1 i 2 thatV=V(R) is also independent & and will therefore not
=3 deler dr[Ve,|* ®  Contribute to the Lagrange equation of motion ®r2].

Since this is the only equation of motion we shall consider,

P2 Re ) V(R) can henceforth be ignored and the Lagrandianan
To=7% | dQ L redr(Va,|%. (9 simply be identified withT.
SinceT is quadratic ind, T, andT, must be evaluated to lll. LINEAR REGIME

sepond order_lra_a and/ora.to descnbg the linear regime. For We first verify that this approach correctly reproduces the
this purpose it is essential to consistently retain all second-

- N . correct linearized equation of motion far which was first
order terms arising frorh in Egs.(8) and(9), and this is why derived by Plessect][S]. In the absence of dissipation,

it was necessary to evaludieto second order ia. Just as in Lagrange’s equation fcs is given by[2]
the planar casgl], however, the linearized equatio(® and

(7) for ®, and®, are nevertheless sufficient to determine d[dT\ oT
andT, to second order, since the linearized interface dynam- E(E) ~ s
ics is completely determined by the linear approximation to

® [3]. The second-order correctionsdg and®, therefore  Combining Eqs(12) and(13), and simplifying the result, we
cannot contribute td@, andT, to second order, and this has obtain
been directly confirmed by a more detailed analysis. Thus

may be determined to second order by combining Egjs-

(9), (1), and(2), expanding the results to second ordein
and/ora, and making use of Eq$3)—(5) as needed. This is

(13

. . d
pI(Rs— R'S)—ApRs=p|R2a

5 )
ﬁ) —ApRs=0. (14)

tedious but straightforward, with the final result Whens, §, ands are eliminated in favor o&, a, anda, this
. . equation reduces to precisely the linearized equation of mo-
T=To+2m(2p,— Ap)RRa(Ra+Ra)+ 7wp R3a2, tion for a previously derived by Plessg3]. Notice that Eq.

(10 (14) admits the solutiors=const whenAp=0, so that a
perturbation withs=0 initially produces no further mixing
where when the fluids have the same density. This does not, how-
1 1 1 1 ever, imply th_ata:O in this case. In parti_cular, iR de-
To= 2#R4R2[p1(— _ _) +p2(_ _ _” (11)  creases thea increases for purely geometrical reasons, but
Ri R R R this is a mere squeezing or stretching effect which does not



PRE 60 SIMPLE MODEL FOR LINEAR AND NONLINEAR . .. 1777

transport any additional mass of either fluid across the sutime dependence. Thus may be regarded as a function of
face r=R, and hence does not represent true mixifig. (s,5,t), which it is convenient to write in the form
does, however, change the surface area of the perturbed in- ) ) )
terface. This in turn will alter the rate of mixing due to mo- T(s,5)=Ag(s,t) TA(s,)5+Ax(s,1)8%, (18
lecular diffusion, but the model in its present form neglects
this effect) where
- 232
IV. NONLINEAR REGIME Ao=Tot+2mAp 1z, (19

In contrast to the planar case, the perturbation is not sinu- _
soidal in the present context and consequently has no well- Rs

defined wavelength. However, it is nevertheless convenient Ar=—27Ap g3, (20)
to define the effective wavelength of the perturbation to be
twice the mean distance between nodes; i.e., P
A2=?. (21
27R
AN=——, (15 - .

I Combining Eqs(16) and (18), we obtain
orl=27R/\. In the linear regimel, is simply constant with F38+F,8°+F15+Fo=Q, (22
its initial valuely. Just as in the planar case, we shall eXtenthere
Eqg. (12) into the nonlinear regime by means of a wavelength
renormalization hypothesi®RH) [1], according to which IA IA Rs
is continuously dynamically renormalized to a value of order Fo(s,t)= (—1) - (—0) =—27Ap—>, (23
|al. The rationale for the WRH was discussed in detail in tjg \ 98] R
Ref. [1]. In contrast to the planar ca$#], Eq. (15 shows .
that\ is not constant in the linear regime but varies wih dA, 27R([ _dp,
The WRH introduces an additional dependenceaar s in Fl(s,t)=2(T) - F( Rﬁ_pl)' (24)
the nonlinear regime, so that=\(R,s) in general, a form S
which subsumes the linear regime as a special case. It then A, 7 ap,
follows from Eq.(15) thatl andp, are no longer constants Fz(s,t)z(g) R 75" (25)
but are now replaced byl(R,s)=27R/\(R,s), and t
p1(R,8)=p1/1(R,s)+p,/[I(R,s)+1]. These replacements
and functional dependences will be understood in what fol- Fa(s,t)=2A ZZWPI (26)
lows. A provisional form for the function\(R,s) will be e 2 R
glraorﬁ)grsigslg.sec VIbased on the formid{fa) used in the Combining Egs(17) and(22)-(26) and simplifying, we fi-

As discussed in Refd], it is necessary to allow for en- nally obtain
ergy dissipation in the nonlinear regime. This can be done by d(ps ap EE
introducing an additional generalized forc€ into 2R2—(L> —(—') RS~ 2ApRs+4cp—5 =0.
Lagrange’s equation of motion fa(t), which then takes the dtl R s R
form [2] (27)
Equation(27) is the fundamental dynamical evolution equa-
E(ﬂ) _ ﬂJr (16) tion of the model. It is a second-order ordinary differential
dt\ 9s/ ds ' equation which determines(t) for an arbitrary giverR(t).

Notice that like the linear equatiofi4), it properly admits
The dissipative forc& will be taken to be a natural spheri- the solutions=const whenAp=0. However, the model is
cal analog of the form used in the planar c@&g namely, not yet complete because we have not yet defir{@&ys).
This will be done in Sec. VI.
_ 5|5
Q=—4mCppa, 17 V. CONSERVATION PROPERTIES

In the planar case, a constant interface acceleration is
equivalent to a time-independent potential energy in terms of
which a conservation law can be established for the intrinsic

eenergy(kinetic plus potentiagl of the mixing layer{1]. This

case is particularly straightforward because there is a clean

o geparation between the energy of the mixing layer and the

of m.Je mixing. - . o . kinetic energy of the center of mass of the system. The
Smce'Eq.(16) involves no partial derivatives with respect spherical case does not appear to admit such a separation,

to R or R, both of which are given functions of time, the and its conservation properties are consequently less straight-

presence oR andR in T is simply equivalent to an explicit forward. Of course, the Lagrangian formulation still guaran-

where 2=p,+p,, a factor of 47R? has been inserted to
convert from energy per unit area to energy itself, and
=0 is another dimensionless coefficient of order unity. Not
that this expression properly vanishes as it should when
=0, so that there is no dissipation of energy in the absenc
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tees that thdotal energy of the system, including(R), is  present context. In the absence of other information, how-
conserved in the absence of dissipation. In the spherical caseyer, it seems reasonable to employ 8%) on a provisional
however, this energy does not appear to separate naturalbasis in the spherical case as well, with the understanding
into a well-defined center-of-mass energy and a physicallyhat\ is no longer a constant but now varies wRhaccord-
significant remainder as it does in the planar case. ing to Eq. (15), so that\g=27R/l5. Equation(15) then

In spite of this, a spherical analog of the planar conservaimplies thatl is given by
tion law can still be established. Like the planar law, this
spherical analog is a reflection and consequence of total en-
ergy conservation, but it is somewhat more artificial and
does not possess the same clear physical interpretation. How-
ever, it nevertheless represents a true conservation properthis completes the model except for the choicépt, and
of the model equations, and as such it seems desirable ta, which will be discussed in Sec. VII.
preserve it when solving these equations numerically. We We note that in this spherical version of the WRHand

-1

lols| )

"27R3

1—mb+bma><(m

=1, (33

shall utilize it for this purpose in Sec. VIII below. hencep, and\ as wel) does not depend oR ands sepa-
We proceed by specializing E€R7) to the case of zero rately but only on the composite variat#éR®, just as one
dissipation ¢=0) and multiplying bys/R to obtain would expect on dimensional grounds. We further notelthat

) has now become a continuous variable and is no longer an
d [p&? . dlnp\(p&® Rd , integer. Thus the spherical WRH requires the heuristic ana-
di\ rRZ "R I R :APE a(s ). (28 lytic continuation, as it were, dffrom discrete to continuous
values, in marked contrast to the planar case wheiig
We now observe that ip(R,s) is of the factored formp, continuous from the outset. This seems harmless, however,

=f(R)g(s), then since\ becomes a somewhat nebulous effective wavelength
in the nonlinear regimél], so that the corresponding value

':<R(9|n P|)f 29) of | no longer literally represents the mode number of a

R |’ single Legendre polynomial as it does in the linear regime.

Allowing | to vary continuously presents no problems, as it
so that Eq(28) becomes enters into the model only through, which is a smooth
continuous function of. Of course, it is easier to visualize
d(fps?) d , as a continuous variable whés-1. Equation(15) shows
at\ jr | TTAPRE G () B0 that this is indeed the case as long <R, and if this
condition were seriously violated one would intuitively ex-
This shows that when the implosion histdR{t) is such that  pect the accuracy of the model to deteriorate in any case.
f(R)R/R® is constant, the quantity
VIl. SPECIAL CASES

E=f(%'sz—RLfsz) (31 In the linear regime with zero dissipation=0 and|
=ly, sodp,/ds=0, and Eq(27) immediately reduces to Eq.

(14). It is also of interest to examine the behavior of the

model asR—c, where it would intuitively be expected to

.e., E=O0. . reduce to the analogous planar model developed in [Réf.

Unfortunately,p, cannot in general be assumed (o have, yiq jimit we haves— R%a ands— R24. However, for this
the factored form upon which this conservation law dependqimit to be sensible it must be taken in such a ’Way that
However, this law can be formally preserved in general by

i - . : ; remains finite, which requires that we simultaneously send
the simple artifice of regardinfas a function of defined by |- at a finite ratiol/R=2/\ [4,5]. It follows that p,

Eq. (29 _rather_ than as a functio_n oF r_elated directly tq, . 251l =pM(mR) and dp, /3s— R~ 3(pl ) (dNlda). Com-
With this reinterpretation,E is still conserved when bining the above relations with E€7), we obtain precisely

is conserved in the motion defined by E&7) with c=0;

f(t)R/R® is constant. Eq. (13) of Ref.[1]. This confirms that the present spherical
model reduces to the corresponding planar modelRas
VI. WAVELENGTH RENORMALIZATION HYPOTHESIS —oo, Since this reduction occurs with no redefinition of the

model coefficientd andc, it seems reasonable in the ab-
sence of other information to sbtandc to the same values
used in the planar case, naméhy,

In the planar casgl], the effective wavelength of the
perturbed interface was taken to be of the form

A=max(\q,bla]+(1—mb))ry), (32
w0l
. . o b=—7—r:, (34)
where), is the wavelength of the initial perturbation,is a a(2—0)
dimensionless proportionality constant, amd-1 is a pa-
rameter which specifies the amplitude-to-wavelength ratio at o= 2—36 (35)
which the transition to the nonlinear regime occurs. Since the C 4a(2-6)’

behavior of the spherical case is much more rich and subtle
than the planar case, there is as yet no assurance thatwdnere« and @ are experimentally accessible parameters ap-
simple prescription of this form will be adequate in the pearing in the late-time scaling laws for the planar Rayleigh-
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Taylor (RT) and Richtmyer-Meshko¢RM) instabilities, re- 12 T T T T T T T
spectively[1]. Similarly, it seems reasonable to provisionally "Adinear” —
setm to whatever value is used in the planar case. However, 19| "A-nonlinear” o o
. .. . . B-linear” ------
since the form of the dissipation ter@ was obtained from "B-nonlinear" + 4
inherently nonlinear consideration$], this term should be sl
switched off in the linear regime by setting=0 when|
=lg.
0 _ 6
£
VIIl. NUMERICAL SOLUTION =
OF THE MODEL EQUATIONS té% 4

In general it will be necessary to solve E&7) numeri-
cally to obtain solutions for arbitrary implosion histories
R(t). For numerical purposes it is convenient to replace the
second-order equatiof27) by an equivalent system of two
coupled first-order equations. It is further desirable to choose
a numerical scheme which preserves the conservation prop: -2
erties established in Sec. V. To this end we define the new

variablew= /fp,S/R, so that 4 L L L L L L !
0 1 2 4 7 8
- RwW t (ns)
5= [tp, ' (36) FIG. 1. Perturbation amplitude vs time for Mikaelian cages

andB.

and Eq.(27) then becomes ] o . . .
plosion histories for which the linear growth has previously

\/?Apl"?s 2cp|w|w been studied by Mikaeliari5]. In these calculations, a
w=\/— - , 3 spherical interface with a density ratio pf/p; =10 and an
o R Rz\/f_pf 37 p y ph/p1

initial radius ofRy=2.5mm is imploded to a final radius of

_ o , . 0.1 mm over a time interval of 8 ns. The initial perturbation
wheref =f(t) is still defined by Eq(29). It is then easy to mode number i$,=50, and the initial perturbation ampli-

verify tha? the foIIovymg numgrlcal §cheme F)reserves thetude was arbitrarily taken to bay=10"2mm. (In the linear
conservation properties established in Sec. V:

case, the actual values afanda, are immaterial, since only
n the ratioa/a, is significant. However, this is no longer the
) (W 4w, (39 case in the nonlinear model, where the valuagéffects the
At 2\/f_P| transition to the nonlinear regimeThe RT and RM scaling
parameters were taken to be=0.061 and9=0.37[7], and
whHL—wn \FApR o1 . [2cpwl\"  muwas taken to be 0.5.
At 1 2R? R Wf—pg LA The two implosion histories considered by Mikaelian
! were a constant inward acceleration followed by a constant
deceleration(caseA), and an exponential implosioftase
Hereq" denotes the numerical approximation to the quantityB). In case A, R=—150um/ng for 0<t<4ns andR
q at timet”, andAt=t""1—1t" is the time step. This numeri- =150um/ng for 4 ns<t<8ns. In casd, R=R,e"", where
cal scheme has the same essential structure as that usedTis —8/In 25 ns. Plots of logja/ay| vs time for both cases
the planar casgl]. The most important natural time scate are shown in Fig. 1. Also shown for comparison purposes are

in these equations is given byr2~|(Ap/p)(R/R)|, and it  the purely linear growth curves, which agree with those pre-
is of course necessary to restrict< 7 to obtain an accurate Sented in Mikaelian's Fig. 85]. As expected, the perturba-
solution. Equationg38) and (39) constitute a linear system tion growth rates slow considerably after the transition to the
of two equations in the two unknown quantitie¥"* and  nonlinear regime, corresponding to the decrease in the effec-
w1, These equations are easily solved to advance the sy§ve mode number with the growth of the mixing region.
tem in time. As previously discussed, the degree of true mixing is pro-
Of course, the use of this scheme also requires numeric®ertional tos rather thana, so inspection of(t) alone is
solution of the auxiliary equatiof29) in order to determine liable to be misleading. The corresponding plots of

f. For this purpose the following scheme seems suitable: 10910/S/So| Vs time are therefore given in Fig. 2, which shows
that in spite of the growth in perturbation amplitude, no sig-

gntl_gn ( R

(39

frtl—fn 1/, glnp,\"*? . i1 nificant true mixing occurs in the nonlinear regime in either
T=§<R 7R ) [(1+o)f "+ (1-a) "7, of these cases.
(40) Finally, to obtain some insight into the effect of the
spherical geometry, we performed corresponding planar cal-
where is the sign of R dIn p /IR, culations with the samay, Ao, R(t), andR(t), but withR,

The above numerical scheme has been used to calculaset to a very large value to reach the planar limit. The result-
the nonlinear perturbation growth during two spherical im-ing plots of logga/ag| vs time are shown in Fig. 3. Com-
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10 T T T T T T T 5 T T T T T T T
wA L w "A-linear” —
8 r "B-linear” ------ - 4 I "B-linear” ----- ]
"B-nonlinear" + "B-nonlinear” +
3 - -
= 3.l
= 5 °
=3 =]
0 0
= =
1 -
0
1k .
_4 1 1 1 1 1 1 1 _2 1 1 1 1 1 1 1
0 1 4 5 6 7 8 0 1 2 3 4 7 8
t (ns) t (ns)
FIG. 2. Perturbation volume vs time for Mikaelian casks FIG. 3. Perturbation amplitude vs time for planar Mikaelian
andB. casesA andB.

ructed by the same procedure used to obtain the corre-
onding planar modé¢lL], which has been shown to repro-
ce correctly all of the known growth laws and scaling
behavior for both the Rayleigh-Taylor and Richtmyer-
q\ﬁéshkov instabilities in both the linear and nonlinear re-
gg%nes. Moreover, the model correctly reduces to the Plesset
equation[3] in the linear regime and to the corresponding
planar model[1] in the limit R—o. This lends cause for
optimism, and perhaps warrants the use of the model on a
IX. CONCLUSION provisional basis until such time as proper validation studies

We have presented a simple model, embodied in &7 can be performed. Just as in the planar case, however, we
and(33), for predicting the time evolutibn of an incompress- emphasize that application of the model to compressible flu-

ible spherical fluid mixing layer subjected to an arbitrary ids with sho<_:ks will require one to distinguish between and
time-dependent implosion histo(t). It is hoped that this = CO"Tect for differences in the preshock and post-shock con-
model will provide a useful tool for making predictive esti- ditions, partlcylarly densities and pertyrbauon amplitude.
mates of mixing at unstable fluid interfaces in spherical ge_These corrections have not been conS|dered here_, bgt they
ometry with variable implosion histories. Of course, the ac-2€ of essential importance for many practical applications.

curacy and utility of the model can only be assessed by
comparisons with data from experiments and/or three-
dimensional direct numerical simulatiowo-dimensional | am grateful to Karnig Mikaelian and Oleg Schilling for
simulations would be suggestive but not definitive, since thénelpful discussions, and for directing my attention to some of
nonlinear dynamics of the mixing layer is fully three- the relevant literature. This work was performed under the
dimensional regardless of the dimensionality of the initialauspices of the U.S. Department of Energy by Lawrence Liv-
perturbationg. Unfortunately, suitable data of this type do ermore National Laboratory under Contract No. W-7405-
not yet seem to be available. However, the model was conENG-48.

parison with Fig. 1 shows that in these particular cases, that
spherical geometry enhances the linear growth rates by marﬁﬁ
orders of magnitude, while the final nonlinear perturbation,
amplitudes are also enhanced but to a much lesser degr
We reemphasize, however, that the perturbation ampligude
alone does not provide an adequate measure of the degree
mixing in spherical problems with significant changeskin
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