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Simple model for linear and nonlinear mixing at unstable fluid interfaces in spherical geometry
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Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94551
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A simple model was recently described for predicting linear and nonlinear mixing at an unstable planar fluid
interface subjected to an arbitrary time-dependent variable acceleration history@J. D. Ramshaw, Phys. Rev. E
58, 5834 ~1998!#. Here we present an analogous model for describing the mixing of two adjacent spherical
fluid shells of different density resulting from an arbitrary time-dependent mean interface radiusR(t). As in
the planar case, the model is based on a heuristic expression for the kinetic energy of the system. This
expression is based on that for the kinetic energy of a linearly perturbed interface, but with a dynamically
renormalized effective wavelength which becomes proportional to the half-widtha(t) of the mixing layer in
the nonlinear regime. An equation of motion fors5R2a is then derived from Lagrange’s equations. This
evolution equation properly reduces to Plesset’s equation for small perturbations, and to the previous planar
model in the limit of very largeR. The conservation properties of the model are established, and a suitable
numerical scheme which preserves these properties is proposed.@S1063-651X~99!13908-4#

PACS number~s!: 47.20.Bp, 47.20.Ma, 47.27.2i, 47.55.Kf
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I. INTRODUCTION

There is a continuing current interest in unstable flu
interfaces, particularly those driven by the normal accele
tion of adjacent fluid layers with different densities. Most
the work in this area has been restricted to planar interfa
However, there is also considerable interest in unstable
terfaces between adjacent spherical fluid shells, which oc
in the implosion of inertial confinement fusion capsules a
in certain astrophysical problems. We have previously p
sented a simple model for describing linear and nonlin
mixing at unstable planar fluid interfaces subjected to
arbitrary time-dependent acceleration history@1#. Our pur-
pose here is to develop an analogous model for the sphe
case.

As in the planar case, the present model is based on
analytical expression for the kinetic energy of a linearly p
turbed interface, together with a wavelength renormalizat
hypothesis according to which the effective wavelength
the perturbation becomes proportional to the half-widtha(t)
of the mixing layer in the nonlinear regime. An equation
motion for a(t) is then obtained from Lagrange’s equation
with an additional generalized force term to represent
effects of dissipation@2#. This equation properly reduces t
Plesset’s equation@3# for a single-mode perturbation in th
linear regime with zero dissipation, and to the correspond
planar model@1# in the limit of very largeR. The develop-
ment closely parallels that of the planar case@1#, with which
the reader is assumed to be familiar.

II. EVALUATION OF THE KINETIC ENERGY

We consider two adjacent concentric spherical shells
incompressible fluid centered at the origin in a spherical
lar coordinate system (r ,u,f). The unperturbed interface be
tween the fluids is located atr 5R(t). The inner fluid~fluid
1! has a densityr1 and occupies the regionR1(t),r
,R(t), while the outer fluid~fluid 2! has a densityr2 and
occupies the regionR(t),r ,R2(t), where R1!R!R2 .
PRE 601063-651X/99/60~2!/1775~6!/$15.00
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The unperturbed velocity field within both fluids is pure
radial, and is given byu5Ṙ(R/r )2 @3#. We now suppose tha
the interface location is perturbed tor 5 r̂ , where

r̂ 5R̂~ t !1S 2l 11

2 D 1/2

a~ t !Pl~cosu! ~1!

Pl(z) is the l th Legendre polynomial (l>1), and a normal-
ization factor has been introduced so thata has the same
significance ash in the planar case@1#, namely,& times the
root-mean-square perturbation height. The perturbation is
sumed to be small in the sense thatl uau!R. The shifted
mean radiusR̂ is implicitly defined by the requirement tha
the perturbed interface be a Lagrangian surface across w
no mass or volume is transported. This requirement may
expressed as*dV r̂ 354pR3, where dV5sinu du df
52p sinu du. Sincea is small, however, it is unnecessary
satisfy this requirement exactly, but in the present context
must satisfy it to second order ina for reasons to be ex
plained below. Solving forR̂ to second order ina, we obtain

R̂5RF12
1

2 S a

RD 2G , ~2!

where use has been made of the well-known relations

E dV Pl~cosu!50, ~3!

E dV Pl
2~cosu!5

4p

2l 11
. ~4!

Equations~3! and ~4!, together with the easily verified rela
tion

E dVS ]Pl

]u D 2

5
4p l ~ l 11!

2l 11
, ~5!

will also be needed in what follows.
1775 © 1999 The American Physical Society
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1776 PRE 60JOHN D. RAMSHAW
By writing Eq. ~1!, we have restricted attention to pertu
bations with no dependence on the azimuthal anglef, which
greatly simplifies the analysis. In a more general treatm
the Legendre polynomialPl(cosu) would be replaced by a
spherical harmonicYl

m(u,f) (umu< l ), which becomes pro-
portional to Pl(cosu) for m50. Fortunately, however, the
restriction tom50 entails no real loss in generality, as it
known from previous linear studies that the perturbat
growth rate is independent of the azimuthal mode numbem
@4–6#. We shall heuristically assume that the same rema
true in the nonlinear regime as well. Direct numerical sim
lations provide some limited support for this assumption@6#.

We require the potential flow fieldu5¹F that results
from the perturbed interface motion to first order ina. The
potentialF has been determined by Plesset@3#, and is given
by F5F1 for r , r̂ andF5F2 for r . r̂ , where

F152
R2Ṙ

r
1

1

l S 2l 11

2 D 1/2

~Rȧ12Ṙa!S r

RD l

Pl~cosu!,

~6!

F252
R2Ṙ

r
2

1

l 11 S 2l 11

2 D 1/2

~Rȧ12Ṙa!

3S R

r D l 11

Pl~cosu!, ~7!

andq̇5dq/dt for any quantityq. The total kinetic energy of
the system is given byT5T11T2 , where

T15
r1

2 E dVE
R1

r̂

r 2 dru¹F1u2, ~8!

T25
r2

2 E dVE
r̂

R2
r 2 dru¹F2u2. ~9!

SinceT is quadratic inF, T1 andT2 must be evaluated to
second order ina and/orȧ to describe the linear regime. Fo
this purpose it is essential to consistently retain all seco
order terms arising fromr̂ in Eqs.~8! and~9!, and this is why
it was necessary to evaluateR̂ to second order ina. Just as in
the planar case@1#, however, the linearized equations~6! and
~7! for F1 andF2 are nevertheless sufficient to determineT1
andT2 to second order, since the linearized interface dyna
ics is completely determined by the linear approximation
F @3#. The second-order corrections toF1 andF2 therefore
cannot contribute toT1 andT2 to second order, and this ha
been directly confirmed by a more detailed analysis. ThuT
may be determined to second order by combining Eqs.~6!–
~9!, ~1!, and ~2!, expanding the results to second order ina
and/orȧ, and making use of Eqs.~3!–~5! as needed. This is
tedious but straightforward, with the final result

T5T012p~2r l2Dr!RṘa~Rȧ1Ṙa!1pr lR
3ȧ2,

~10!

where

T052pR4Ṙ2Fr1S 1

R1
2

1

RD1r2S 1

R
2

1

R2
D G ~11!
t,

n

s
-

d-

-
o

is the kinetic energy of the unperturbed system,Dr[r2
2r1 , r l[r1 / l 1r2 /( l 11), and small terms of orde
(R1 /R)2l 11 and (R/R2)2l 11 have been neglected.

Just as in the planar case, the volume per unit area of
mixing layer is proportional toa. In the spherical case, how
ever, the area itself is no longer constant but is proportio
to R2, which changes with time. Thus the volume of th
mixing layer, which is a measure of the amount or degree
which the two fluids have been mixed at any given time,
proportional tos5R2a, and a simpler and more fundament
description is obtained by eliminatinga and ȧ in favor of s

andṡ5R(Rȧ12Ṙa). Indeed, Eqs.~6! and~7! show that the
perturbation toF is simply proportional toṡ, so that the
velocity field remains unperturbed whenṡ50, even though
a and R may be changing with time. The inverse relatio
between (a,ȧ) and (s,ṡ) is given by a5s/R2 and ȧ

5R23(Rṡ22Ṙs), which may be used to reexpressT in
terms ofs and ṡ. We thereby obtain

T5T01
p

R3 @2DrṘs~Ṙs2Rṡ!1r lR
2ṡ2#. ~12!

Equation~12! will be used to obtain the dynamical evolutio
of the interface from Lagrange’s equations@2# in terms of the
generalized coordinatess andR and their time derivativesṡ
andṘ. For this purpose we must also consider the poten
energyV associated with whatever external forces~presumed
conservative! are employed to produce the mean interfa
motion R(t). But these forces are applied at the surfacer
5R2 and/orr 5R1 , so they are independent ofs. It follows
thatV5V(R) is also independent ofs, and will therefore not
contribute to the Lagrange equation of motion fors @2#.
Since this is the only equation of motion we shall consid
V(R) can henceforth be ignored and the LagrangianL can
simply be identified withT.

III. LINEAR REGIME

We first verify that this approach correctly reproduces
correct linearized equation of motion fora, which was first
derived by Plesset@3#. In the absence of dissipation
Lagrange’s equation fors is given by@2#

d

dt S ]T

] ṡD5
]T

]s
~13!

Combining Eqs.~12! and~13!, and simplifying the result, we
obtain

r l~Rs̈2Ṙṡ!2DrR̈s5r lR
2

d

dt S ṡ

RD2DrR̈s50. ~14!

Whens, ṡ, ands̈ are eliminated in favor ofa, ȧ, andä, this
equation reduces to precisely the linearized equation of
tion for a previously derived by Plesset@3#. Notice that Eq.
~14! admits the solutions5const whenDr50, so that a
perturbation withṡ50 initially produces no further mixing
when the fluids have the same density. This does not, h
ever, imply thatȧ50 in this case. In particular, ifR de-
creases thena increases for purely geometrical reasons, b
this is a mere squeezing or stretching effect which does
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PRE 60 1777SIMPLE MODEL FOR LINEAR AND NONLINEAR . . .
transport any additional mass of either fluid across the
face r 5R, and hence does not represent true mixing.~It
does, however, change the surface area of the perturbe
terface. This in turn will alter the rate of mixing due to m
lecular diffusion, but the model in its present form negle
this effect.!

IV. NONLINEAR REGIME

In contrast to the planar case, the perturbation is not s
soidal in the present context and consequently has no w
defined wavelength. However, it is nevertheless conven
to define the effective wavelength of the perturbation to
twice the mean distance between nodes; i.e.,

l5
2pR

l
, ~15!

or l 52pR/l. In the linear regime,l is simply constant with
its initial valuel 0 . Just as in the planar case, we shall exte
Eq. ~12! into the nonlinear regime by means of a wavelen
renormalization hypothesis~WRH! @1#, according to whichl
is continuously dynamically renormalized to a value of ord
uau. The rationale for the WRH was discussed in detail
Ref. @1#. In contrast to the planar case@1#, Eq. ~15! shows
that l is not constant in the linear regime but varies withR.
The WRH introduces an additional dependence ona or s in
the nonlinear regime, so thatl5l(R,s) in general, a form
which subsumes the linear regime as a special case. It
follows from Eq. ~15! that l andr l are no longer constant
but are now replaced byl (R,s)52pR/l(R,s), and
r l(R,s)5r1 / l (R,s)1r2 /@ l (R,s)11#. These replacement
and functional dependences will be understood in what
lows. A provisional form for the functionl(R,s) will be
proposed in Sec. VI based on the form ofl(uau) used in the
planar case.

As discussed in Ref.@1#, it is necessary to allow for en
ergy dissipation in the nonlinear regime. This can be done
introducing an additional generalized forceQ into
Lagrange’s equation of motion fors(t), which then takes the
form @2#

d

dt S ]T

] ṡD5
]T

]s
1Q. ~16!

The dissipative forceQ will be taken to be a natural spher
cal analog of the form used in the planar case@1#, namely,

Q524pcr̄
uṡuṡ
R4 , ~17!

where 2r̄5r11r2 , a factor of 4pR2 has been inserted t
convert from energy per unit area to energy itself, andc
>0 is another dimensionless coefficient of order unity. N
that this expression properly vanishes as it should wheṡ
50, so that there is no dissipation of energy in the abse
of true mixing.

Since Eq.~16! involves no partial derivatives with respe
to R or Ṙ, both of which are given functions of time, th
presence ofR andṘ in T is simply equivalent to an explici
r-
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time dependence. ThusT may be regarded as a function o
(s,ṡ,t), which it is convenient to write in the form

T~s,ṡ,t !5A0~s,t !1A1~s,t !ṡ1A2~s,t !ṡ2, ~18!

where

A05T012pDr
Ṙ2s2

R3 , ~19!

A1522pDr
Ṙs

R2 , ~20!

A25
pr l

R
. ~21!

Combining Eqs.~16! and ~18!, we obtain

F3s̈1F2ṡ21F1ṡ1F05Q, ~22!

where

F0~s,t !5S ]A1

]t D
s

2S ]A0

]s D
t

522pDr
R̈s

R2 , ~23!

F1~s,t !52S ]A2

]t D
s

5
2pṘ

R2 S R
]r l

]R
2r l D , ~24!

F2~s,t !5S ]A2

]s D
t

5
p

R

]r l

]s
, ~25!

F3~s,t !52A25
2pr l

R
. ~26!

Combining Eqs.~17! and ~22!–~26! and simplifying, we fi-
nally obtain

2R2
d

dt S r l ṡ

R D2S ]r l

]s DRṡ222DrR̈s14cr̄
uṡuṡ
R2 50.

~27!

Equation~27! is the fundamental dynamical evolution equ
tion of the model. It is a second-order ordinary different
equation which determiness(t) for an arbitrary givenR(t).
Notice that like the linear equation~14!, it properly admits
the solutions5const whenDr50. However, the model is
not yet complete because we have not yet definedl (R,s).
This will be done in Sec. VI.

V. CONSERVATION PROPERTIES

In the planar case, a constant interface acceleratio
equivalent to a time-independent potential energy in term
which a conservation law can be established for the intrin
energy~kinetic plus potential! of the mixing layer@1#. This
case is particularly straightforward because there is a c
separation between the energy of the mixing layer and
kinetic energy of the center of mass of the system. T
spherical case does not appear to admit such a separa
and its conservation properties are consequently less stra
forward. Of course, the Lagrangian formulation still guara
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1778 PRE 60JOHN D. RAMSHAW
tees that thetotal energy of the system, includingV(R), is
conserved in the absence of dissipation. In the spherical c
however, this energy does not appear to separate natu
into a well-defined center-of-mass energy and a physic
significant remainder as it does in the planar case.

In spite of this, a spherical analog of the planar conser
tion law can still be established. Like the planar law, th
spherical analog is a reflection and consequence of tota
ergy conservation, but it is somewhat more artificial a
does not possess the same clear physical interpretation. H
ever, it nevertheless represents a true conservation prop
of the model equations, and as such it seems desirab
preserve it when solving these equations numerically.
shall utilize it for this purpose in Sec. VIII below.

We proceed by specializing Eq.~27! to the case of zero
dissipation (c50) and multiplying byṡ/R to obtain

d

dt S r l ṡ
2

R2 D1S Ṙ
] ln r l

]R D S r l ṡ
2

R2 D5Dr
R̈

R3

d

dt
~s2!. ~28!

We now observe that ifr l(R,s) is of the factored formr l
5 f (R)g(s), then

ḟ 5S Ṙ
] ln r l

]R D f , ~29!

so that Eq.~28! becomes

d

dt S f r l ṡ
2

R2 D5 f Dr
R̈

R3

d

dt
~s2!. ~30!

This shows that when the implosion historyR(t) is such that
f (R)R̈/R3 is constant, the quantity

E5 f S r l

R2 ṡ22
DrR̈

R3 s2D ~31!

is conserved in the motion defined by Eq.~27! with c50;
i.e., Ė50.

Unfortunately,r l cannot in general be assumed to ha
the factored form upon which this conservation law depen
However, this law can be formally preserved in general
the simple artifice of regardingf as a function oft defined by
Eq. ~29! rather than as a function ofR related directly tor l .
With this reinterpretation,E is still conserved when
f (t)R̈/R3 is constant.

VI. WAVELENGTH RENORMALIZATION HYPOTHESIS

In the planar case@1#, the effective wavelengthl of the
perturbed interface was taken to be of the form

l5max„l0 ,buau1~12mb!l0…, ~32!

wherel0 is the wavelength of the initial perturbation,b is a
dimensionless proportionality constant, andm;1 is a pa-
rameter which specifies the amplitude-to-wavelength ratio
which the transition to the nonlinear regime occurs. Since
behavior of the spherical case is much more rich and su
than the planar case, there is as yet no assurance th
simple prescription of this form will be adequate in th
se,
lly
ly

-
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present context. In the absence of other information, ho
ever, it seems reasonable to employ Eq.~32! on a provisional
basis in the spherical case as well, with the understand
thatl0 is no longer a constant but now varies withR accord-
ing to Eq. ~15!, so thatl052pR/ l 0 . Equation ~15! then
implies thatl is given by

l 5 l 0F12mb1b maxS m,
l 0usu

2pR3D G21

. ~33!

This completes the model except for the choice ofb, c, and
m, which will be discussed in Sec. VII.

We note that in this spherical version of the WRH,l ~and
hencer l and l as well! does not depend onR and s sepa-
rately but only on the composite variables/R3, just as one
would expect on dimensional grounds. We further note thl
has now become a continuous variable and is no longe
integer. Thus the spherical WRH requires the heuristic a
lytic continuation, as it were, ofl from discrete to continuous
values, in marked contrast to the planar case wherel is
continuous from the outset. This seems harmless, howe
sincel becomes a somewhat nebulous effective wavelen
in the nonlinear regime@1#, so that the corresponding valu
of l no longer literally represents the mode number o
single Legendre polynomial as it does in the linear regim
Allowing l to vary continuously presents no problems, as
enters into the model only throughr l , which is a smooth
continuous function ofl . Of course, it is easier to visualizel
as a continuous variable whenl @1. Equation~15! shows
that this is indeed the case as long asl!R, and if this
condition were seriously violated one would intuitively e
pect the accuracy of the model to deteriorate in any case

VII. SPECIAL CASES

In the linear regime with zero dissipation,c50 and l
5 l 0 , so]r l /]s50, and Eq.~27! immediately reduces to Eq
~14!. It is also of interest to examine the behavior of t
model asR˜`, where it would intuitively be expected to
reduce to the analogous planar model developed in Ref.@1#.
In this limit we haveṡ˜R2ȧ ands̈˜R2ä. However, for this
limit to be sensible it must be taken in such a way thal
remains finite, which requires that we simultaneously se
l˜` at a finite ratio l /R52p/l @4,5#. It follows that r l
˜2r̄/ l 5 r̄l/(pR) and ]r l /]s˜R23( r̄/p)(]l/]a). Com-
bining the above relations with Eq.~27!, we obtain precisely
Eq. ~13! of Ref. @1#. This confirms that the present spheric
model reduces to the corresponding planar model asR
˜`. Since this reduction occurs with no redefinition of th
model coefficientsb and c, it seems reasonable in the a
sence of other information to setb andc to the same values
used in the planar case, namely@1#,

b5
pu

a~22u!
, ~34!

c5
223u

4a~22u!
, ~35!

wherea andu are experimentally accessible parameters
pearing in the late-time scaling laws for the planar Rayleig
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PRE 60 1779SIMPLE MODEL FOR LINEAR AND NONLINEAR . . .
Taylor ~RT! and Richtmyer-Meshkov~RM! instabilities, re-
spectively@1#. Similarly, it seems reasonable to provisiona
setm to whatever value is used in the planar case. Howe
since the form of the dissipation termQ was obtained from
inherently nonlinear considerations@1#, this term should be
switched off in the linear regime by settingc50 when l
5 l 0 .

VIII. NUMERICAL SOLUTION
OF THE MODEL EQUATIONS

In general it will be necessary to solve Eq.~27! numeri-
cally to obtain solutions for arbitrary implosion historie
R(t). For numerical purposes it is convenient to replace
second-order equation~27! by an equivalent system of tw
coupled first-order equations. It is further desirable to cho
a numerical scheme which preserves the conservation p
erties established in Sec. V. To this end we define the n
variablew5Af r l ṡ/R, so that

ṡ5
Rw

Af r l

, ~36!

and Eq.~27! then becomes

ẇ5A f

r l

DrR̈s

R2 2
2cr̄uwuw

R2Af r l
3

, ~37!

where f 5 f (t) is still defined by Eq.~29!. It is then easy to
verify that the following numerical scheme preserves
conservation properties established in Sec. V:

sn112sn

Dt
5S R

2Af r l
D n

~wn111wn!, ~38!

wn112wn

Dt
5SA f

r l

DrR̈

2R2 D n

~sn111sn!2S 2cr̄uwu

R2Af r l
3D n

wn11.

~39!

Hereqn denotes the numerical approximation to the quan
q at timetn, andDt5tn112tn is the time step. This numeri
cal scheme has the same essential structure as that us
the planar case@1#. The most important natural time scalet

in these equations is given by 1/t25u(Dr/r l)(R̈/R)u, and it
is of course necessary to restrictDt!t to obtain an accurate
solution. Equations~38! and ~39! constitute a linear system
of two equations in the two unknown quantitiessn11 and
wn11. These equations are easily solved to advance the
tem in time.

Of course, the use of this scheme also requires nume
solution of the auxiliary equation~29! in order to determine
f . For this purpose the following scheme seems suitable

f n112 f n

Dt
5

1

2 S Ṙ
] ln r l

]R D n11

@~11s! f n1~12s! f n11#,

~40!

wheres is the sign of (Ṙ ] ln rl /]R)n11.
The above numerical scheme has been used to calc

the nonlinear perturbation growth during two spherical i
r,
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plosion histories for which the linear growth has previous
been studied by Mikaelian@5#. In these calculations, a
spherical interface with a density ratio ofr2 /r1510 and an
initial radius ofR052.5 mm is imploded to a final radius o
0.1 mm over a time interval of 8 ns. The initial perturbatio
mode number isl 0550, and the initial perturbation ampli
tude was arbitrarily taken to bea051022 mm. ~In the linear
case, the actual values ofa anda0 are immaterial, since only
the ratioa/a0 is significant. However, this is no longer th
case in the nonlinear model, where the value ofa0 affects the
transition to the nonlinear regime.! The RT and RM scaling
parameters were taken to bea50.061 andu50.37 @7#, and
m was taken to be 0.5.

The two implosion histories considered by Mikaelia
were a constant inward acceleration followed by a cons
deceleration~caseA), and an exponential implosion~case
B). In case A, R̈52150mm/ns2 for 0,t,4 ns and R̈
5150mm/ns2 for 4 ns,t,8 ns. In caseB, R5R0et/T, where
T528/ln 25 ns. Plots of log10ua/a0u vs time for both cases
are shown in Fig. 1. Also shown for comparison purposes
the purely linear growth curves, which agree with those p
sented in Mikaelian’s Fig. 3@5#. As expected, the perturba
tion growth rates slow considerably after the transition to
nonlinear regime, corresponding to the decrease in the ef
tive mode number with the growth of the mixing region.

As previously discussed, the degree of true mixing is p
portional tos rather thana, so inspection ofa(t) alone is
liable to be misleading. The corresponding plots
log10us/s0u vs time are therefore given in Fig. 2, which show
that in spite of the growth in perturbation amplitude, no s
nificant true mixing occurs in the nonlinear regime in eith
of these cases.

Finally, to obtain some insight into the effect of th
spherical geometry, we performed corresponding planar
culations with the samea0 , l0 , Ṙ(t), andR̈(t), but withR0
set to a very large value to reach the planar limit. The res
ing plots of log10ua/a0u vs time are shown in Fig. 3. Com

FIG. 1. Perturbation amplitude vs time for Mikaelian casesA
andB.
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1780 PRE 60JOHN D. RAMSHAW
parison with Fig. 1 shows that in these particular cases,
spherical geometry enhances the linear growth rates by m
orders of magnitude, while the final nonlinear perturbat
amplitudes are also enhanced but to a much lesser de
We reemphasize, however, that the perturbation amplituda
alone does not provide an adequate measure of the degr
mixing in spherical problems with significant changes inR.

IX. CONCLUSION

We have presented a simple model, embodied in Eqs.~27!
and~33!, for predicting the time evolution of an incompres
ible spherical fluid mixing layer subjected to an arbitra
time-dependent implosion historyR(t). It is hoped that this
model will provide a useful tool for making predictive es
mates of mixing at unstable fluid interfaces in spherical
ometry with variable implosion histories. Of course, the a
curacy and utility of the model can only be assessed
comparisons with data from experiments and/or thr
dimensional direct numerical simulations.~Two-dimensional
simulations would be suggestive but not definitive, since
nonlinear dynamics of the mixing layer is fully three
dimensional regardless of the dimensionality of the init
perturbations.! Unfortunately, suitable data of this type d
not yet seem to be available. However, the model was c

FIG. 2. Perturbation volume vs time for Mikaelian casesA
andB.
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structed by the same procedure used to obtain the co
sponding planar model@1#, which has been shown to repro
duce correctly all of the known growth laws and scali
behavior for both the Rayleigh-Taylor and Richtmye
Meshkov instabilities in both the linear and nonlinear r
gimes. Moreover, the model correctly reduces to the Ple
equation@3# in the linear regime and to the correspondi
planar model@1# in the limit R˜`. This lends cause for
optimism, and perhaps warrants the use of the model o
provisional basis until such time as proper validation stud
can be performed. Just as in the planar case, however
emphasize that application of the model to compressible
ids with shocks will require one to distinguish between a
correct for differences in the preshock and post-shock c
ditions, particularly densities and perturbation amplitud
These corrections have not been considered here, but
are of essential importance for many practical application
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FIG. 3. Perturbation amplitude vs time for planar Mikaelia
casesA andB.
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